
Towards Better Object Oriented Software
Designs With Quality Function Deployment

M. ELBoushi (i)
Jet Propulsion Laboratory

S. Zawacki (2)
Jet Propulsion Laboratory

E.Domb 13)
GOAUQPC

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

1 Abstract

NASA’s new direction is towards “faster, better, cheaper” space missions. At the Jet Pro-
pulsion Laboratory (JPL), home of NASA’s interplanetary unmanned missions, we are
meeting this challenge in many ways. One such effort is the Advanced Multi Mission
Operations System (AMMOS), a ground software intensive system currently in develop-
ment that will replace the costly past method of re-engineering and redeveloping a
ground system for each new JPL mission. AMMOS’will be used to support all future JPL
missions, from interplanetary trips to Mars and Saturn, to the “Mission to Planet Earth”.

Quality Function Deployment (QFD) was used for the requirements and design analysis
of one program in the Sequence Subsystem of AMMOS. This program, REVIEW, is
meant to provide spacecraft sequencers a tool to make electronic reviews of the files
produced by other sequence programs. The target customer was a small, yet diverse
internal group spanning multiple scientific and engineering disciplines as well as individ-
ual mission “cultures”. QFD provided a methodical approach of capturing the voice of the
Customer (VOC) and played an important role in developing and tracing requirements.
The QFD process is currently being extended and used for our object oriented design
(OOD) of REVIEW, wherein important objects and classes are being identified and
traced to the original VOC. This information will be used in prioritizing the development
order.

This paper shows how QFD focused our effort to produce an internal product for internal
customers with diverse needs, and how it was expanded for use with modern 00D soft-
ware technology

(X)D with QFD 1 4125/94

2 Introduction

Spacecraft are composed of many different subsystems that are needed for their specific
missions. Among these are spacecraft specific subsystems, such as attitude control,
data storage and thermal control, as well as instrument subsystems that allow the space-
craft to carry out its scientific mission (see Figure 1). All these subsystems are controlled
through the ground data system. The ground data system communicates with the space-
craft through sequences, which are sets of commands that are relayed to the spacecraft
and loaded into it’s on board memory. The spacecraft then executes these time ordered
instructions. The format of a sequence is very strict and specific, and before it is
uploaded to the spacecraft, there are a number of programs that are run to make sure
that no spacecraft or mission damaging instructions are contained in the sequence. This
is a very critical and lengthy process, which is currently done by many different groups
using a variety of software tools and ad hoc methods, including manual inspection of
computer printouts, BASIC “stripping” programs running on personal computers, C-shell
or “Awk” scripts running on UNIX workstations, and so on. REVIEW is a new multi-mis-
sion development that is being created to address the ad hoc method of sequence
inspection. Ultimately, REVIEW will offer sequence engineers and other potential users a
tool that incorporates all the features they requested in a single multi-mission package
that is easy to use, adapt, port and maintain. This is all within the new spirit of NASA’s
“faster, better, cheaper” space missions.

QFD was selected as the tool to use to gather the requirements and aid in the design
analysis, primarily to serve as an experiment in the use of TQM tools to solve a real
world problem that we face everyday at JPL. QFD was found to be a very good way of
gathering requirements from many potential user groups with diverse needs and internal
structures. This diversity was why a single sequence review tool wasn’t created earlier.
Another obstacle was that our customers (sequencers) had a particular way of reviewing
sequences that was established decades ago. They also came from various technical
backgrounds, and had personal preferences for computer platforms, operating systems

. and programming languages. We felt that QFD could help us systematically address
each of these issues, plus the standard issues faced by all software developers. ,

00D with QFD 4/25/94

3 Body

3.1 Preliminaries

The first QFD implementation problem we faced was the selection of the team members.
Prior to selecting the REVIEW steering committee, a preliminary questionnaire was cir-
culated to get an initial indication of who the potential customers were (see Figure 2).
The questionnaire asked what the person’s current duties were, where in the sequence
generation process their duties lied, what platform and operating system’ they currently
used or were familiar with, how they went about reviewing their sequences, what they felt
could better help them expedite this process, and finally, what they felt electronic review
meant to them. From this questionnaire, a potential list of steering committee members
was formed. We decided that the team should span the several spacecraft subsystems,
JPL flight projects and the various software development disciplines. One important cri-
tefion for team membership was that the prospective team member had to have either
worked with, or currently been working on sequences. To make our selection, we found it
helpful to make a matrix of JPL flight project vs. spacecraft subsystem (Figure 3). We
filled each location with a prospective team member name and took advantage of known
overlap in order to achieve team balance and to keep the size down to 9 members.

Once the REVIEW steering committee was selected, we all took a class in QFD. The
steering committees first priority was to develop requirements. To help drive out require-
ments, we developed 3 prototypes in parallel with the QFD exercise. These prototypes
were built with the idea that they would demonstrate the feasibility of REVIEW and inves-
tigate important technological issues. One prototype used “perI”, a UNIX script utility pro-
gram, to develop and illustrate a primitive sequence review tool that did simple stripping.
Stripping is the process which, based on a condition, extracts information contained in a
sequence file. Another prototype was created in LISP, and took advantage of. it’s artificial
Intelligence capability to give a more complex illustration of a sequence review tool,
Among this prototypes features was the ability to adapt it to any sequence file input for-
mat. This was an important goal because, in order for REVIEW to be successful, it had to
be able to address the many different sequence file formats that existed for current as
well as future space missions. The third and final prototype used two other UNIX utilities,
“Lex” and “Yacc”, to build a little language parser and lexical analyzer that was ultimately

to be incorporated into the final tool. These tools were overseen by the QFD team in the
later phases of their development. As time went on, these prototypes were combined
with existing sequence generation tools (and other prototypes of future ones) to demon-
strate their combined capability. Many demonstrations were made to potential custom-
ers, and the prototypes were in a state of continuous improvement throughout this whole
process. Combined with the ongoing QFD exercise, the prototypes drove out all the
requirements by challenging the customer to think about what an ideal electronic review
tool would look like.

00D with QFD 4 4/25/94

—

OOD with QFD

.-

.-

.-

Figure 2: Overall QFD/Prototype Flow

5 4/25/94

~
a)u e

al !!G u o
s E
(D

Projects P u)

Voyager l.),1 G 1
Galileo B t I
Topex D D
Mars Observer A

—
t- H

Magellan G
Cassmi c
Multl-Mission I

Key: A-1 Individual Team Members

Figure 3: Team Matrix

O(ID with QFD 6 4/25/94

3.2 Voice of The Customer (VOC)

Next, a second more specific and detailed questionnaire had to be developed in order to
capture the VOC. The questions on the VOC form grew out of interviews the steering
committee conducted on each other as an exercise on the last day of our QFD class, and
refinements during subsequent team meetings (Figure 4). The questions themselves
were based on the”5 W’s and an H“ principle. The target customers that the team inter-
viewed came from a cross section of sequencers from the various JPL missions (Figure
5).

From the results of the VOC interviews the steering committee synthesized short state-
ments of customer desires, necessities and functions of REVIEW. These statements
were grouped with an affinity process, As the steering committee grouped these state-
ments, we started to decide whether the statement was a Demanded Quality (DQ), Qual-
ity Characteristic (QC) or function. The DQ’s were organized into 6 broad categories
such as “Sequence Validation” and “Ease of Use”, and then into additional sub-catego-
ries such as “Find stimuli of violations” and “Filter and re-orc)er fields”. Functions, and
QC’S, which express in a quantitative manner how the developers will meet the customer
DQ’s, were synthesized by the team from the interviews and DQ’s. This was the single
biggest problem the team faced during the QFD application. We found that QC’S were
not easy to express for software, and as a result the team spent several meetings shuf-
fling items between the DQ, QC and function headings. Figure 6 shows the result of our
efforts. Once the VOC was translated into the three groups, we started to build our matri-
ces using QFD software.

3.3 Demanded Quality Weight

A third questionnaire had to be created to get the customer ranking (or weight) of each
DQ. The third questionnaire posed a problem, because we were asking the customer to
weight the importance of over 50 DQ’s, and then subgroup these weights according to
the rank they gave each DQ. We had to come up with a questionnaire that would be easy
for the customer and still give us all the information we needed (see Figure 7). All the
DQ’s were put on the vertical axis, and all the weights on the horizontal axis. Weights
were measured from 1 (“Most important”) to 5 (“Least Important”). First, the customer ‘
was asked to scan the list of DQ’s and rank them from 1 to 5. Next, we asked the cus-
tomer to group each choice by weight, so that every DQ that the customer gave a weight
of 1 to became a group. They then proceeded to rank this sub group from 1 to n, where n
was the number of choices in weight group 1. This allowed the steering committee to
compute an average score for each one of the DQ’s

00D with QFD 7 4/25/94

Build VOC
YQuestionnaire

\ .estl

\ ‘Uestionnairek

Customer
Matrix

/

Interview
Customer

/

Synthesize DQ,QC
Function Statements

\
Construct A-1 ,A-2,B-I
Matrix

Analyze

Figure 4: QFD Requirements Exercise

OOD with QFD 8 4/25194

—-

\

Spacecraft
Subsystem

Flight
Project

VOYAGER

GALILEO

TOPEX

MARS OBSERVER

MAGELLAN

CASSINI

ULYSSES

SIR-C

—

MESUR

x

x

x

x

x

x
———

x
—.——

—.——

x

—-——

x

x

——-

X

x

———

x
———

x

x

x

x

x

Key: X marks an interviewed customer

‘x

x

x

x

x

x

x

x

Figure 5: Customers Interviewed

Impro

Figure 6: Quality Characteristics vs. Demanded Qualities

00D with QFD 10 4/22/94

AT
——

Weight

1
Demanded

ualities

t-===w --t-+finds state (as a function of time)

L -L-check S/C event interaction

L–––––– ---P--verify observation implementation

F: *’find stimuli of constraint violation

correlate mission plan and PEF

Etoread +
Validate resource utilization

Validate fault protection F/P

Validate real time (R/T) commands

L-- ---1---Highlight and mask items

-ions ---l--J-
text translation and substitution

- 1 - - - - -—

state graphs
.—

+

—

Observation plots 5

A Weight of 1 is ranked “Most important’

Figure 7: Questionna

OOD with QFD

2

3

2

1

4

3 4

—

1

3

2

2

1

and weight 5 “Least Important”

re of Customer Importance

11

5

2

1

4/25/94

4 Matrices

4.1 A-1, A-2, B-1 Matrix

Part of the standard QFD methodology is building matrices, the first of which is generally
the A-1 requirements matrix, or DQ’s vs. QC’S. We quickly realized that the resulting
matrix was too large, and that we would be consumed by the n-squared effect while ana-
lyzing our correlations. We dealt with this problem by reducing and/or combining some of
our DQ’s and QC’S. For example, our customers gave us a long laundry list of computers
and operating systems that they wanted REVIEW to run on, and these eventually found
their way onto the DQ list. However, the first and second questionnaire clearly showed
that the overwhelming customer favorite was an AMMOS Unix workstation. Therefore,
we reduced the DQ list from a list of 5 computers and 5 operating systems to just “MOSO
workstation” and “Works on my system”. This eliminated eight rows from the DQ list!
Once we completed this compression, we reduced the matrix to 42 DQ’s by 18 QC’S,
leaving us a more manageable correlation job.

As mentioned previously, the biggest problem we had using QFD, including the matrix
development, was cliff iculty in expressing QC’S for software, Of the 18 QC’S in our final
matrix, 7 deal with user interaction time, either time spent in learning the operation of
REVIEW or input effort. Although these times are important to users, and represent emi-
nently testable QC’S they do not tell us much about measuring how well we meet many
of the DQ’s. We think that the remaining 11 QC’S fill this gap but we are not sure, and will
be looking for evidence of this during our implementation.

Another trap we fell into was wasting too much time worrying about the empty columns
and rows in our correlation matrix. We fretted for nearly a week about our lack of correla-
tions for the “MOSO workstation” and “Works on my system” DQ’s. Although we were
obviously missing a QC to measure how well we met the DQ, we didn’t need it! Why?
Because we knew we had to meet those customer DQ’s, and furthermore we had
already conceived of a simple way to do it, so why worry about this missing QC?

4.2 Result

We found that using the QFD process took about the same time as the old way that we
used to gather requirements. This could be attributed in part to the fact that this was our
first time using QFD, so it was as much a learning process as it was an exercise. How-
ever, the results we got from QFD were much better than the previous method we had
used. We found out that QFD is a good tool to drive out customer requirements and mea-
sure their importance, and our performance will only get better as we get more experi-
ence at using the QFD tool.

00D with QFD 12 4!25/94

5 Software Requirements Document (SRD)

Since the QFD methodology is too terse for an SRD, we had to expand what we learned
from the matrices to write the document. Our first attempt consisted of translating the list
of DQ’s, functions and QC’S into plain English.

This approach, although simple and quick, was rejected because the resulting require-
ments document was too hard to read. The problem was that our lists of qualities and
functions did a good job of summarizing user requirements, but did not provide the
reader with much of a feel for the functionality of the REVIEW product.

Our second, more successful approach, was to realize that the task of stating our
requirements was going to be a lot simpler if we first carried out a couple of “pre-design”
steps prior to writing requirements: First, a tentative Graphical User Interface (GUI) was
designed. This gave us a chance to organize user-demanded features in a manner the
user could relate to. We implemented this preliminary design in Microsoft Msual BASIC
and made it available to potential users for feedback. Second, we needed to show a con-
crete example of a Little Language (LL), and explain how it relates to the desired func-
tionality of REVIEW. This step actually required little effort, since a LL was already
developed as part of the prototype effort. While this LL didn’t meet all the requirements, it
close enough to provide the reader with a sense of how the product operates.

With these precursor steps, the resulting SRD tells the story of how the user interacts
with REVIEW and, along with the list of expanded DC? ’S, QC’S and functions, completed
the REVIEW requirements process. Next, our attention turned to the design of REVIEW.

6 Object Oriented Design (OOD)

6.1 Methodology

Although we thoughtour use of QFD was over with the completion of the requirements
process, we later learned we could make good use of the techniques during our 00D of
REVIEW.

The method we used to design REVIEW was essentially the Class/Responsibility/ColIab-
oration (CRC) approach described by Wirfs-Brock, et al. (see reference). The starting
point of the design (see Figure 8) was the REVIEW SRD, which concentrates almost
exclusively on the user’s perspective of the program (as you might suspect). The require-
ments do not address how the program is supposed to accomplish the various tasks.

Therefore, we found that the SRD was not “rich enough” as a source of objects when it
came to describing the inner workings of the program. In particular, it was difficult to try
and write program operation scenarios that went beyond the user interface. We then
decided to use the scenarios as a source of objects, in addition to a means to check the
validity of the design. This is of course dangerous, since many design decisions could be
made inadvertently while writing scenarios. We avoided this problem by keeping the sce-

00D with QFD 13 4/25/94

narios as simple and “down to Earth” as possible and subjecting them to frequent scru-
tiny.

After writing five or six scenarios and looking at the objects that would be necessary to
support them, it became clear that objects fell into well-defined classes, and that these
classes should be organized into hierarchies using the inheritance scheme. The resulting
classes provided our first “draft” of the design.

A “shell” prototype program, featuring all the classes, but only some of their responsibili-
ties, was implemented in C++. This was done to validate our design and to make sure
that the C++ compiler would not object to our inheritance scheme.

Inheritance, which had been the focus of our class-building effort, is only part of the story.
It became clear that classes had a definite “personality” and that classes with similar per-
sonalities should be grouped in separate subsystems.This naturally led to the next phase
in the design: organizing classes into subsystems (Figure 9).

In the next step of the design, we built two more prototypes. The first one was a refine-
ment of the earlier “shell”. Although this new version still did not do any useful work, it
was able to print in indented, scenario-like style what it was doing. The second of these
prototypes consisted of a MOTIF implementation of the “Define Strip” panel of the
REVIEW user interface, This is probably the most complex graphic object in the GUI, As
a result of all this prototype activity, we gained the confidence necessary to organize
our preliminary classes into well-defined subsystems, We feel that our subsystem design
is robust enough that it will survive any last-minute change to the class definitions, and
we therefore look at ,our subsystem descriptions as the central part of our design.

6.2 Class Trace Back to SRD

With our classes defined, we did a trace back to the SRD. We made sure that every
DQ,QC and Function was covered by a class and a subsystem. This helped flush out
any missing aspect of our design. t

6.3 DQ vs. Classes

Now that we had an object oriented design with subsystems composed of classes and
objects, how do we proceed in order to plan the work for the first delivery of REVIEW?
After pondering this question, it occurred to us that QFD could give us an answer. We
decided to make a matrix of DQ’s vs. Classes and subsystems in the final design (Figure
10). Although an imposing matrix with some 1600 possible interactions, it was actually
quite easy to complete because the notion of an object derived directly from the SRD,
and hence directly from the DQ’s and functions, was very concrete and easy for the pro-
gramming staff to visualize, given the completed design. The only other “breakthrough”
thinking that was needed was tore-define the meaning of the correlation weights.
Instead of the classical “Strong”, “Medium” and “Weak definition, which had little mean-
ing in this context, we used the following definition that the programmers could more eas-

00D with QFD 14 4/25/94

ily relate to:

Percent Object Code Requirement to Meet DQ Weight
.—

80-1 00% 9
30-79% 3
0-29% 1

Completing the matrix correlations told us what objects were required for each DQ. We
could then choose the DQ’s to be included in each delivery and see what we had to
code.

7 Conclusion

QFD allowed us to address the VOC’S. This was a process that was lacking in most of
our software developments at JPL. With JPL’s new directive of “faster, better, cheaper”,
QFD will play a major roll in achieving these goals. New and existing missions will
require that software be more efficient and provide the correct capabilities. More mis-
sions will require that we come up with a process of reusable software. In the future,
QFD will be expanded to not only address the VOC, but provide a more efficient way at
building object oriented programs. Also, we are thinking of using QFD in the testing
phase of the REVIEW package. In all, we hope to streamline the whole process of going
from requirements to implementation and maintenance of a software project using QFD.

Acknowledgment

The work described in this paper was performed by the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under contract to the National Aeronautics and Space
Administration.

We wish to thank Dr. Pierre Maldague for his many efforts in completing this manuscript

References

1. “Designing Object-Oriented Software”, Rebecca Wirfs-Brock, Brian Wilkerson
and Lauren Wiener, Prentice Hall (1990)

(X)D with QFD 15 4125/94

1 Extract SRD Nouns

SRD I and Noun Phrases
~ as Candidate ~ cull ‘ist

I I Objects

‘ry Scenerio’s ~
rom our List

Extract new
“Hidden”

tic’s \
List Object
Responsibilities

Grou Objects
8

~contracts :

into ubsystems 8
3
5m
u-)

Construct
DQ vs. Object
Matrix

\ Object Priorities

!

—

Figure

OOD with QFD

Object Oriented Design

16 4125194

Figure 9: Subsystems and Objects

OOD with QFD 17 4/25/94

F-ho,. I

P ‘--
I I

syatam

$ -
$ g

j 2 +
.~ ~ =

A A A
A A A
A A A
A A A

I

A A A,
A A A

A

A A A
A A A

- . v .
MATRIX WEIGHTS I ARROWS 1

!ronq @ 9 Maximum+

ndiumo J Minimum +

.Ou At Nominal o

Figure 10 DQ vs. Classes Matrix

(X)D with QFD 18 4/22/94

